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2. Introduction

Topolog is the module generator, layout engine, and circuit database manager for the ASP

Silicon Compiler. It takes in a description of a circuit to be generated, constraints on the bound-

ing box and a set of ports, and outputs a sticks-based layout description which can be converted

to a fabricatable form by our mask-level design environment, STICKS-PAC JCheng87J.

A module generator is a program which, given a description of a circuit (or module) as a col-

lection of blocks or subcels and a set of parameters, returns a cell, or piece of silicon, which

matches the parameters given. The subcells may be modules in their own right, or elementary

pieces of silicon called leaf cell,. A layout engine is a program which, when given a description of

a circuit as either a collection of logical units called gateo or as a list of transistors and connec-

tions, returns a piece of silicon which implements the circuit.

Topolog combines the functions of a module generator and layout engine in the hope that a

combination of these tools may solve problems specific to each. Typical module generation sys-

tems manipulate pieces of geometry rather than circuit elements, which means that most module

generation programs and parameters simply direct the manipulation of pieces of wire rather than

function. Further, if a module consists of submodules, the choice of which submodule to instan-

tiate first has a very large effect on the resultant circuit for purely geometric reasons. Folding a

layout program into a module generator permits the generator to concentrate on the functional

design of circuits, rather than on their geometry, which in practice yields much more concise

module descriptions. Further, if the submodules are expanded as blocks and jointly placed and

routed, the second problem disappears.

Typical layout generators are flat: that is, a single long list of transistors is used to describe

the function to be generated. This is both tedious from the point of view of a user (who must

enter his circuit as a long sequence of logic equations, rather than using circuit hierarchy) and robs

the layout engine of inherent partitioning of most logic circuits. This is particularly onerous since

most automated placement tools either implicitly or explicitly partition a circuit into connected
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subeircuits. The class of placement tools for which do such partitioning is very broad indeed,

including particularly clustering, min-cut, force-directed and clique-based placement tools. Even

simulated annealing, which specifically does not work by circuit partitioning, derives its name and

*its original motivation from the formation of metal into disjoint clusters.

3. Decriptlon of Topolog

This section will be relatively brief, since we presume that the Prolog community will be

more interested in the performance of Topolog and the programming techniques which we used

than in the actual algorithms employed.

Topolog is designed around the basic abstraction of a block. A block represents a primitive

circuit element, and it is defined by the fields it contains and the routines which generate it. A

block has a p-aide and an n-aideboth of which have a max.height and min.height, a set of de-

mente, a set of sticks, and a set of pins. In addition, the block have various fields used only by

Topolog itself, a set of neName8, and a maz.width and min width. Topolog's basic function is

to group blocks into rows, and to route signals between the blocks. A single routing channel runs

between the p- and n-side of any row; a power bar runs above the p-side of every row, and a

ground bar runs beneath the n-side of any row. Odd rows are flipped about the horizontal axis so

that power and ground bars may be shared between rows. It is tempting to consider Topolog as a

standard cell layout program, but this is quite misleading. Since blocks can be anything which

shares the characteristics mentioned here, it is more accurate to describe Topolog as a Gate

Matrix style layout engine.

Topolog has a six stage pipeline. After inputs are parsed, a preliminary generation of all the

blocks is done. In this pass, the max.height and min.height and max.width and min.width of

the blocks are fixed. The blocks are then grouped into rows, and placed within rows. During this

placement phase, macroblocks (modules) are expanded into their primitive components. Detailed

generation of blocks is done; the blocks are fleshed out into a sticks-and-elements description, and

the pins for channel routing are defined. The channel is then routed. Finally, numbers are
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assigned to each row and the package is output.

3.1. Technology Independence and Extensibility 1: Block Generation

Topolog currently supports five types of blocks: static cmos and-or-invert gates, domino

emos gates, pas and transmission gates, and an experimental circuit style called precharged

cascode voltage switches. These five types of blocks are all that we have experimented with.

Topolog, however, is designed to support any circuit style or technology that can be

expressed in the style mentioned above. The terms p-aide and n-aide refer to p. and n-diffusion

regions, reflecting our primary concern with CMOS technology; however, there is no reason, in

principle, to use these regions specifically for these purposes. One can imagine, for example, using

Topolog for NMOS designs using the p-side for the enhancement device.

The addition of a new circuit type is quite easy, due to Prolog's clause-based programming

style. The user must write a clause for the procedure buildBlock(Input, Block), where Input is the

input for the block; for example, the clause header for aoi blocks is buildBlock(Output -

aoi(Ezpr),Btock). This clause must return a Block, which is a data structure with the fields men-

tioned above. Some of these fields (in particular, the max-height and min.height fields of the two

sides and the maxzwidth and min.width field must be filled in, since these are used by the place-

ment code. In addition, the user probably wishes to store a parse form of Ezpr for later use. The

user may use a variety of builtin tools to construct his clause; these will be fully described in the

final version of the paper.

buildBLock only does the first pass at generation of a block. In the second pass, the block

must become an object with a full set of elements and sticks. The procedure

generate.block(Block, PRowva, NRowe, Column8) is called to instantiate a block on the rows and

columns given; these columns are guaranteed to be in the range given by height and width.

Again, a large set of tools are available to aid in the construction of this routine.



3.2. Existing Blocks and Generation Routines

Our existing logic blocks are all designed by the well-known Uehara-Vas Cleemput pro-

cedure. The UVC algorithm has been shown to derive near-minimal-width single-diffusion-strip

static CMOS arrays.

3.3. M4odule Generation and Extensibility 11

It is convenient for users to define modules as collections of blocks or other modules. As a

result, buildBlock has a 'catch-all' clause; if it cannot build a block any other way, it calls a prc.-

cedure defined by its first argument. Specifically:

buildBlock(X, Block)
X -.. jBlockTypelBlockArgsi,
concat(BlockArgs, [Blocki, FunctionArgs),
Call -.. IBlockType I FunctionArgsi,
Call.

Hence a request in Topolog's input file of the form:

alu(x, y, Z).

would result in a call to the Prolog procedure:

alu(x, y, z, Block).

Of course, the user would have to define that procedure. buildBLock calls must be used to build

the various component blocks (including other modules, which would be invoked by the same

mechanism). A final call

buildCompositeBlock((Blockl,...,BlocknJ, Block)
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must appear as the last call in the sit procedure. Here, Blockl,...,Blockn are the blocks built by

the call to bvildBlocks in the al procedure.

Of course, the alu procedure must be known to Topolog at the time of invocation; the

request:

use(fle).

loads the procedures defined in file.

No other clauses are required for module construction, since the placement routines break

modules into their component parts before the blocks are actually generated; hence generateBlock

clauses need only be supplied for primitive blocks.

4. Types and Type Definitlons

Topolog is about 3000 lines of Prolog code. 18 major data types are defined in the program,

with a varying number of felds - from 2 to 19. These data types are often widely shared among

various procedures (the logicBlock datatype is used by virtually every stage in the pipeline).

Moreover, as in all program development, these datatypes often change during the course of pro-

gram development, as new requirements for the various datatypes are discovered and old require-

ments discarded.

The standard method of data structure creation and access in Prolog is through the mechan-

ism of general term unification. This mechanism makes the definition of data structures quite

easy, but spreads the definition of a type among all the clauses that access the type. Naturally,

this mechanism makes the modification of type definitions quite onerous. Further, if types are

large this tends to degrade the legibility of the code.

The problem of spreading type definitions throughout a program is well known in the Lisp

community JCharniakJ. In that community, records are defined as fixed-length lists, and some

combination of car and cdr is used to access the various fields (this is known as the caddadr prob-

lem). Of course, the problem is somewhat worse there, since a Lisp programmer must ask e

-,



whether some instance of cdaddr means ne.name, or, instead, block.tranistora.

There have been two traditi-nal solutions to this problem in the Lisp community. The first

has been to define a build procedure for each data structure, and an access procedure for each

field. In general, the build procedure and access procedures for each type were maintained in a

separate file.

The second solution is the one that we chose to adopt for Prolog. A procedure typedef,

which builds the various building and accessing procedures for us.

tjlpedef(X)
X -.. /Name I Argoe,
makeStrudType(Y,Name, Ar),
assert Macro8(NameArg8,Y,), !,
dele eeMakeSt at ement (Name),
a#sert (makeStru(c(NameY)).

makeStrucdType makes a dummy template for the record, so that the unification mechanism

does the actual structure creation for us (in other words, the arguments in the structure definition

are replaced by unique variables)

makeStructTpe(XName,Args):-
makeVarList(Arg8,Var8),
X -.. [Name I Vars].

makeVarList(,0):- !.

makeVarList(. IX,(. 111):-
makeVarList(X,Y).

assertMacro creates a clause in the procedure field for each field of the record. This per-

mits symbolic access to each field of the record. It also deletes old access clauses for this field of

this data structure.

assert Macros(-j - I.

assert Macroe(Namc,fArg l Argsl,Dummy,Count):-

N N'' V %.
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atomic(Arg), f,
arg(Count, Dummy, Val),
P - field(Dummy,4rg,.j,
ternoveEzietingMa cro(P),
Q - field(Dummy, Arg, Val),
a..ert(( Q .- 1)),
Count 1 is Count + 1,
a.,ertMacro(Nam,Arg.,Dumm,Countl).

rernoveEzi~tingMacro simply retracts ay clause whose head matches the term passed in.

Once this procedure is defined, a call of the form typedefplogicFn(opargo,eount,fiipped)) wini

define the following clauses:

makeStruct~ogicFn,IogicFn(.11,. 19,_. 1,.14)).
fieLdflogicFn(. ,. 1,.14,.15),op,. 5):-!.
IieidpogicFn(. 19,-.5,. 14,-.15),drg.,.5).!.L
fieldflogpicFn(.1*,-. 1,-.5,-.15),cmsnt,5-S). L
fteldflogicFn( 19,_.19,..14,. 5),fiipped,.5):-!.L

and a data structure of tyoe logicFnt can be accessed ad used directly.

Embellishments are possible once this basic tool is in place. For example, we might wish to

access a fair number of fields with one call:

field.(St ruct , L):!

field. (St act , /Field - Va1 I Fields.))

field(Sttuct, Field, Val),
field. (Sttu ct , Fields).

And hence field. (LogicFn, lop = Op, arg. - Mg.)) digs out both the arg8 ad op field of

LogicFn if LogicFn is a logicFn. This trick ca be used to initialize fields as well:

makeS
trudt(St rudeName, Struct, St ructField.):

mokeStruct (St tact Name, Struct),
fields(Struct, Struct~ield.).

ad hence makeStructflogicFn, LogicFn, lop a nd, arg. - z, y, s, count - 8) makes LogicFn
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a logicFn with the fields set appropriately.

4.1. Generic Types and Access Procedures

Many CAD systems use variants on object-oriented programming. This paradigm is attrac-

tive for these applications, since one wishes to define operations over abstract objects. These

abstract objects may differ in detail, but they share all the necessary attributes for the appropri-

ate operations.

An example of an abstract data type is given by our block, which we encountered above. As

we noted, there are currently five sorts of block defined; of course, there are potentially very many

more. The placement routine, however, cares not a whit about anything other than that the

block has certain named fields.

TLs variant on object-oriented programming could have been provided by writing pro-

cedures lock.height, block.width, and so forth, and demanding that the user or programmer

write (generally trivial) clauses for each such procedure. As it is, the programmer must write

clauses for only two procedures (buildBlock and generateBlock),and ensure that the appropriate

fields are included when the new block is typedefd. Hence much of the abstraction that we seek is

provided by the generic access procedure field. Clearly this approach places a much less onerous

burden on the programmer, and thus fulfills the economy of representation that is one of object-

oriented programming's principle advantages.

4.2. Efficiency Considerations

typedef, field and makeStrud, as given above, are highly inefficient, if conceptually simple.

Here we assume that unifications form the great cost of most Prolog implementations, and hence

we count the number of unifications involved in our scheme. If we consider some procedure P that

accesses n fields of some structure Q of m fields, we see that there are 0(nm) aucce88ful

unification operations (since n Sm this is O(m2 )), and as many as O(nl) uneucceuful unifications,

where I is the total number of fields of all types defined in the program. Hashing techniques (eg,

1%
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[Warrenj (PLMJ) can reduce the latter number to 0(m 2 ) given a compiled environment. If Q were

expanded in P's header, as is the usual case, then a total of O(m) unifications would be done.

We can do somewhat better, in general, than this latter number. First, we must only unify

those fields that we actually desire, which will reduce the number of succesful unifications.

Second, we must avoid a single global field procedure with many clauses, which will reduce the

number of uneucceeful unifications.

The following field procedure reduces the number of succesful unifications by doing a table e

lookup on the symbolic name of a field to find the corresponding argument number, and then

using the builtin arg to get that argument: 5,

field(Struct, FieldName, Val).-
funtor(Struct, Functor, Arist),
fteldNum(Fund or, Arity, FieldName, FieldNum),
arg(FieldNum, Struct, Val).

The following typedef and associated code generates a new version of makeStrud, as well as

the new procedure fteldNum:

typedef(X)
X -(Name Argo],
functor(X, Name, Arity),
assert Macros(Name,Args,Arity), !,
deleteMakeStatement(Name),
assert((makcStruct(NameY) :- funeor(, Name, Arity))),
asser((tppecheckY, Name) :- funcdorO, Name, Arity))).

delteMakeStatement(Name):-
removeEz ist ingMacro(makcStrud (Name,.)),
rem oveEzietingMacro(typecheck(.,Name)).

anert Macro.(Name,Arge,Arity):-
assert Macroe(NameArge,1,Arigty).

aecert Macroe(., J, .,

assert Macro8(Name, [Arg I Args], Countln, Arity)
atomic(Arg), !,

P - fieldNum(Name, Arity, Arg, .,
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remnoveEzietinpMacro(P),
R - fieldNum(Name, Arity, -, Cousnt In),
remnoveEzstingMacro(R),
Q - fleldNusm(Name, Anity, Arg, Countln),
aseet(Q),
Next Count is Countln + 1,
aseert Macroe (Name, Args, Next Count, Ari.'V).

assert Macroe (., fArg IArgsJ, ProcName, Count).
write('Error - must be an atom as a field name, not ,

writ e(Arg), i,
break.

It can be seen that the number of succesful unifications in P is 0(n) (assuming arg does

0(l) unification, as it will in any rational implementation). The number of unsuccesful

unifications remains; of course, using indexing, this is already 0(l), but we must assume a dumb

execution environment. For the moment we satisfy ourselves with a two-level procedure, as

defined by the following (last) version of tpedef:

typedef(X) :
X -.. [NameI AngeJ,
functor(X, Name, Aritg),
aesert Macroe (Ndme,Arge,Arity), I
del et eMa keSt atem ent (Name),
assert ((akeStruct (Name,Y) :- functor(Y, Name, Anit))),
assent ((typecheck(Y, Name).:- Iunctor(Y, Name, Arityj))).

delet eMakeStat ement (Name)
removeEziet ingMacro(makeStruct (Name..),
remnoveEziet ing Macroftypecheck( ,Name)).

assert Macroe (Name,Arg8 Arity).
gene ym(PnocName), -

P - fidldNsm(Name, Arity, ArgName, AngNum),
remnoveEzist angMacno(P),
Q -n.. fPocName,AngNameAng1umJ,
assert((P:. Q, I)),
assert Macroe (Name,Arge,ProcName,1).

a8eeniMacroe (., fl, _, .) :- L

assert Macroe (Name, fAng I Angel, ProcName, Count In)
atomic(Arg), 1,
Q -n.. fPocName, Ang, CountlnJ,
assert ((Q I)),



NeztCount i. Countln + 1,
aseert Macroe(Namc, Arge, ProcName, NeztCount).

.Aert Macroe(., [ArglArgeJ, ProcName, Count).
write(Error - muet be an atom a8 a feld name, not 9,

write(Arp), nL,
break.

In this case, a new procedure is generated for each datatype (the procedure genem gen-

crates a new atom). This procedure has one clause for each field, and fieldNum has one clause

per datatype. It can readily be seen that the worst-case number of unsuccesful unifications is

O(tn +mn), where t is the total number of datatypes defined in the program.

In an interpreted environment, this is still not competitive with the standard method of type

creation and access, but we believe that the robustness and concision of the resulting code is

worth the performance penalty. This is particularly true since, in a compiled environment, the

penalty for unsuccesful unifications largely disappears. If n <m, as it is in practice, in a com-

piled environment our last version would run faster than the standard method. In practice, we

have found that the last version of typedef improves both our runtime and global stack usage by

about 60% over the naive version first used.

The idea of generating a special-purpose procedure for each datatype may be taken to an

extreme by currying the typename, arity, and fieldname together to obtain a special-purpose one-

clause procedure for each field in each type; for example, logicFnSflipped(5), thus faking the hash

function that a compiler would provide. The Cprolog builtin name was used to turn atoms into

lists and vice-versa as intermediate stages in the currying. We found that our storage costs grew

dramatically, largely as a result of the computation of the procedure name from the given data-

type and fieldname. Further, performance was only slightly better than the early naive version of

typedef, and uncompetitive with two-level lookup. The code for field is given-tere:

field(Struc, FieldName, Val):-

%S%* - *2 .~.
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fund or (Strudci, Fundor, Arity~),
nome(Fuftdot, FMame),
naome(Arity, Al),
name(FeldName, ArgName),
con cat (Al, ArgName, Tmp),
con eat (Fame, Tmp, TmOp),
name(ProcName, TMP28),

ar;(FieldNumn, Struct, Val).

We are indebted to Peter Vanroy for suggesting the two-level table lookup.

5. Destructive Assignment

5.1. Introduction

The Aquarius Project [Despaingsal at Berkeley is developing high-performance computers

[Despain85bi for the execution of Prolog. Part of the evaluation effort that we are making is to

understand the advantages and disadvantages of Prolog for the implementation of programs to

solve challenging problems in difficult domains of discourse. In particular, we have engaged in the

design and implementation of a suite of Prolog CAD tools for VLSI design [Despain86i (Pincus86j

(Bush8TI (Cheng87j (McGeerS7I.

In the course of implementing a VLSI layout program in Prolog during the summer and fall

of 1985, we experienced difficulties in implementing standard routing and transistor placement

algorithms. After discussions with other groups that had used Prolog for Computer-Aided Design

of Integrated Circuits programs, we concluded that the difficulties we experienced were common

among Prolog CAD programmers. We investigated the nature and source of our difficulties, and

concluded that the principal problem lay in Prolog's lack of a destructive assignment operator

akin to Lisp's rplaca or rplacd. We then investigated the addition of such an operator to Prolog.

This paper presents the results of that study.
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This chapter is organized into seven sections. Section Ii gives examples of the algorithms

that we could not implement in nominal time in pure Prolog. Section M gives a general graph-

theoretic argument to explain the difficulty of data-structure manipulation without destructive

assignment. Section IV defines the destructive assignment operator rplacarg that we require and

its operational and semantic characteristics. Section V describes an method for implementing the

rplacarg in C-Prolog, or any implementation of Prolog that supports the war builtin. Section VI

describes the features that must be added to a Warren Abstract Machine (WAM) [Warren83] to

implement rplacarg for both the structure-sharing and structure-copying case. In particular, we

show that a highly-efficient 0(1) rplacarg primitive may be added to our WAM-based Pro-

grammed Logic Machine (PLM). Section VII describes a multidimensional array implementation

based on the rplacarg construct. In an appendix, we show that any implementation of Prolog that

supports the !, fail implementation of negation supports war as well; hence we conclude that rpla-

carg is semantically implied by cut and fail.

5.2. U-Algorithme We Couldn't Implement Efflicently In Prolog

The central art of computer science is performing computations in the most time-efficient

manner possible. Without efficiency concerns, all of computer science is trivia.

Concern for efficiency leads us t* .reate data structures. Data structures are ways of storing

intermediate results of computation, so that these computations need not be re-performed.

Indeed, one might argue persuasively that all of computer science is the design of data structures

that have the property that the amount of computation required to solve a given problem is

minimized.

The core of our argument is that the implementation of some operations over some data

structures is difficult and inefficient in Prolog, that these data structures are relatively familiar

objects in some application domains, and that these difficulties arise precisely because of the appli-

cative nature of Prolog. We have a general argument to explain this phenomenon, but our case

can best be understood in light of a few examples.

,e
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We have not been able to implement the algorithms given below in nominal time in pure

Prolog. By pure Prolog we mean Prolog without the well-known assert/retract primitives, which

are known to be non-applicative (or, in the Prolog parlance, non-logical) or the var primitive,

-which we can show below is semantically equivalent to the non-applicative rplacarg primitive we

advocate. Further, we can show that the well-known cut, fail construction for negation is

equivalent to var, so we do not consider implementations using cut, fail.

$.2.1. Kernlghan-Lin MIn-Cut Algorlthm

The Kernighan-Lin min-cut algorithm [Ullman82 is a greedy procedure to partition hyper-

graphs into two equal-sized sets so that the cut - the number of hyperedges that connect the two

sets - is minimized. It has been shown that the min-cut problem for hypergraphs is NP-complete

jGarey7gj. However, the Kernighan-Lin algorithm is an excellent approximation procedure.

The Kernighan-Lin algorithm begins with the nodes of the graph partitioned arbitrarily into

the two sets, called left and right. On each iteration, a pair of nodes (, r) is selected for inter-

change; the pair selected is that creating the greatest decrease or smallest increase in the cut.

The pair are not immediately interchanged; but are merely marked as selected, treated as inter-

changed, and removed from left and right. When left and right are empty (there are no more

unselected nodes), the total summed cost of the interchanges are computed in order. The largest

negative total is taken, if there is any, those paris of nodes are interchanged, and the selection

process begins on the new left and right; if no negative total is found, the algorithm terminates.

The minimum requirement of this algorithm is that the cost of each interchange be rapidly

computed. This in turn implies that each hyperedge have a pointer to each node upon which it is

incident. Similarly, once a node is selected, it must be marked as selected; the selection, or not, of

a node affects future cost computations on hyperdges incident upon that node. If marking a node

as selected involves regenerating the node (as it does if neither var nor some form of destructive

assignment is used), each hyperedge incident upon that node must be regenerated. There are

potentially 2' such hyperedges on an n node hypergraph, and hence this is quite an expensive



isi

operation. Similarly, when the nodes are interchanged, if an interchange requires regeneration of

each mode, them every hyperedge must be regenerated. There are at most 2' hyperedges on an

n-node hypergraph.

We provide our Prolog implementation in an appendix, using our rplacarg primitive, to be

discussed in section IV.

5.2.2. O(n) Average-Case Sorting

Jon Bentley [Bentley841 has posed a puzzle in sorting. Given two integers N,M, with

N<AM, generate N distinct random numbers in the range 1o,M and print them out, sorted, in

average-case time O(N).

Clearly this problem cannot be solved in worst-case time better than O(NlogN). However,

Knuth [Knuth86e has posted a solution to this puzzle with average-case behavior O(N), and

worst-case behavior O(M').

The core of Knuth's method is the use of a hash table of size IV, which is simply a vector.

Implementation of vectors in Prolog has proven quite troublesome, and there have been a number

of proposals. In section VII we show that the central difficulty in the implementation of vectors is

the avoidance of copying the entire vector when a single argument is set. This is precisely the

problem that we are trying to solve, and so it is unsurprising that our proposal here makes the

implementation of arrays quite easy. For the moment, we just note that we can use the builtin

functor to get storage, and assume that in any rational Prolog implementation arg is 0(1), and

hence can be used for indexing.

Knuth uses a monotone-increasing function to hash each random number into the hash

table, and uses an insertion-sort to resolve collisions. Clearly the hash table remains sorted; if

there are a very small number of collisions, then time of the algorithm is O(N); in fact, the proba-

bility of collision is very small. It is possible, however, for all numbers to hash to the same

bucket, in which case Knuth's time is O(N).

."-'X..: ". '. .' ,' .%'*' . %' .' ,''''.'.
" '% .' . ' - ' ' . ' . "

.'',-, -. " . , ," ",, . " '%' '-. ," " -,'s" '%' ." .'-',. .. ',." ." .'-'-. 'A
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We have devised a Prolog algorithm, using var,which matches Knuth's performance.

Instead of maintaining only one item per bucket and using an insertion sort to avoid collisions,

we maintain a bucket as a list and sort the list on output. In order to avoid having to replace the

entire array, we maintain an unbound edr on each bucket. The algorithm appears here.2

- onsult(rand. int).

table(Seed):.- M - 24, N - 96, MI is 2*M, functor(S,8,M2), % Initialize.
Jll. tbe(M,N,S,SeedM),
S -.-. Is-IS ,
print. sort(SS),nl,

print(' DONE! '),nL.

/* fill the hash table */

fill. table(M,N,S,Seed,O).
fill. table(M,N,S,Seed,1)

rand. int(SeedSnew,,N,T),
H is i+1#M(1'.1)//N,

rg(H, S, V), insert (Tv,,J),
Jill. 9able(M,N,S,Snew, J).

/* Insert an element into the table, maintaining the unbound cdr '/

insert (X, Y, 1, J) :. varfl), !, Y- IX1., J is 1-1. % Insert element.
insert(X, [XI.I, -, .) :. % eliminate dupe
insert(X, fHlTJ,J) - insert(X,T,I,J). % Skip down list.

/* If a bucket is empty, it is unbound, and hence unifies to kruft (or, for
that matter, any atom). If it is nonempty, it is a list, and hence won I
unify °/

print.sort(5).
print_ sort ([kruft I TI) - !,print.sort (T). % Strip empty lists
print .oort((H I TI) - #ort(HC),lprint(C),pr.st ). % Print ith bucket

pr.st(fl) :. print('.), ni. % Terminate the printout
pr. st([kruft I TI) :. 1, pr. st(T). % Strip out empty lists
pr.st([HIT):- print(,'), sort(HC), % Sort the bucket

iprint(C) , pr.st(T). % Print the bucket

lprint(HJ) - print(H). % Print last item
(print ((H I TI) -print (H),print(, '),lprint (T). % Print list element

'if we use a random number generator with period > M, then &l generated samples are distinct and we need not
check for duplicates. if there are no duplicates, then the only entry in a bucket which might unify to & list containing a
new entry is the unbound ed, and hence we do not need vor

-'('S * Z
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Now, in the average case there are a small number of collisions, and hence our algorithm,

like Knutb's, is O(N). In the worst case, where every number hashes to the same bucket, the cost

of sorting the bucket is O(NlogN) but the worst-case time is determined by the cost of adding

items to the end of the list. This, of course, is Ei - O(N)

Of course we could do somewhat better than this if either we could prepend to the list or

maintain a form of balanced tree rather than a list with an unbound cdr. Unfortunately, either

balancing a tree or prepending items to the list involves generating a new tree or list, and thus

changing the appropriate entry in the hash table. But changing the appropriate entry in the bash

table without copying the entire bash table (an O(N) cost for every new random number, giving

us a worst-case time of 0(]V2 )) requires some form of destructive assignment. It is quite easy to

see that if some form of destructive assignment is employed, the worst-case time of the algorithm

goes to O(NlogN), which is nominal for this problem.

If we did not use var, then this hasb-table algorithm would require copying the hash table in

the event of a collision. This gives a worst-case time complexity of O(W), which is the same as

the implementation using var. The space complexity of the algorithm using var is O(N), how.

ever, and the space complexity without var is O(M)).

5.3. M - A Graph-Theoretic View

In order to understand why the above examples are difficult to solve efficiently in a purely

applicative manner, we need an abstract view of the data structures created and used by pro-

grams. We picture a program's data structure as a dynamic graph, whose nodes are the records

used to instantiate the structure and the atoms and constants in use by the program, and whose

edges represent pointers to substructures. For example, the data structure foo(1,2,3) is

represented as the graph:
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Atoms and constants are nodes of outdegree 0. Unbound variables have

indegree-outdegree-, and their sole edge points to themselves.

Only nodes with indegree-0 are accessible at the top level of the program; we call these

nodes the roots of the program's data structure.

In general, we assume that it costs so more to generate a node and set its outbound edges

than it does to visit it. Hence, we are concerned with the number of visits that we must make to

a node.

We may create or destroy nodes, but the nodes themselves hold no value; here we are

unconcerned with the internal value of a node (in the case of an internal node, its type - eg the

name of its functor; in the case of an atom or constant, its name or value). All we are concerned

with here is reassigning the edges of the graph. If a constant field changes in a structure, we dep-

ict this by changing the edge representing the field from the old constant node to the new.

6.3.1. Principles of Modification

Now that we have a graph-theoretic model of data structures, we can turn our attention to

the principles that we wish a modification operation to have. First, we have a Principle of Con-

sistency: if a node in the graph is modified, then either the modification must be invisible to all

ancestors in the graph or those ancestors must be modified to be ancestors of the modified node.

Second, we have a Principle of Atomic Modification: if a clause C modifies a node N, it should
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not have to modify any other node in the graph solely to maintain the principle of consistency.

The principle of consistency is clearly just correctness in a more specific guise. The principle

of atomic modification is a consequence of various principles of structured programming and

language design, principally abstraction and information hiding." There is no reason to believe

that an arbitrary program data structure graph is homogenoua (in other words, all nodes are of

the same type). Clearly, then, if a clause is forced to modify an arbitrary number of nodes in the

graph, it is potentially forced to modify nodes of any type. Clearly this contradicts any reason-

able definition of modularity or information hiding. Indeed, one can argue that an important

consequence of the structured programming revolution is the notion that a procedure should

operate on only a finite number of types, independent of the number of types defined by the entire

program.

A weaker form of the principle of atomic modification may be derived on complexity .

grounds. In general, the number of nodes in a program's data structure graph at any time is poly-

nomial in the size of the input. We can certainly devise programs in which the number of reas-

signments of graph edges is of the same order as the complexity of the program. Hence if the

number of modifications a clause must make in order to maintain the principle of consistency is

not bounded above by some integer k >0 independent of the size of the input, then the complexity %

of the program will not be nominal. From these considerations we derive the Principle of

Bounded Modification:if a clause C modifies a node N, it should not have to modify more than k

other nodes in the graph, for k an integer >0, independent of the size of the input.

It is very unlikely that any modification discipline that guarantees consistency over a range

of programs and data structures may violate the principle of atomic modification and nevertheless

uniformly respect the principle of bounded modification. Hence it seems very likely that these two

principles are in fact equivalent.

"For a thorough discuuion of such principle, me, eg, iMacLennin83l

% %
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The only form of assignment permitted by Prolog is that an unbound variable's sole edge

may be assigned to point to anything (or, equivalently, the variable's node may be replaced in the

graph by any subgraph). A more general form of assignment, not permitted by pure Prolog, per-

mits edges to be reassigned once assigned.

Prolog's form of assignment raises the possibility of conflict between the principle of con-

sistency and the principle of atomic modification. If a node N is to be modified in Prolog, then

the node must be regenerated, and a new node N' created. All ancestor nodes to N must be

modified to point to N' in order to maintain the principle of consistency; the principle of atomic

modification forbids the procedure that generates N' from modifying the ancestor nodes.

We immediately observe that there is no conflict between the two principles under Prolog's

form of assignment if the program's data structure graph is a forest of trees. Let N be modified

by clause C to N'. Now, either N is a root or it is not. If N is a root, then it has no ancestors

and hence no other nodes need be regenerated in order to maintain the principle of consistency,

and hence the principle of atomic modification is not violated. If N is not a root, then it has a set

of ancestors say Nis... N, and the set has been traversed by a set of clauses Ci, ... ,ch,

where clause C, traversed node N,, N( is the parent of N14+1 in the program's data structure

graph and C, is the parent of C+ 1 in the program's proof tree (or, if you prefer, calling tree).

Hence C, may generate N,', where N,' is identical to N, save that it is the parent of N,4+1 rather

than N,4+. Since each clause modifies one and only one node in the data structure graph, the

principle of atomic modification is upheld.

If the program's data structure graph contains networks or more general graphs, then the

principles are in conflict indeed. The difficulty is that node N in a network has several parents,

only one of which is known to be an argument to a clause in the program's proof tree. In the case

of a tree above, the graph could be easily modified since the set of nodes which had to be regen-

erated were visited in the natural course of satisfying the program's proof tree. In the case of a

network, this is not the case. The principle of consistency cannot be maintained simply by

F. • . •. -. - % -%r . ,, ,- % .% , %'-. ,.
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upward traversal of the program's current proof tree. Rather, the set of parents must be found

by explicit traversal of the program's data structure graph and directly modified. Since this pro-

cedure is recursive, potentially the program's entire data strucure graph mat be immediately

regenerated, which is a clear, and serious, violation of the principle of atomic modification. It is

also, in general, a violation of the principle of bounded modification.

Prolog programmers therefore have three choices. First, we may use only trees or

simplifications of trees (such as lists, simply a special case of a binary tree); second, we may

violate the principle of atomic modification, which in practice makes many programs expensive

and difficult to write; or we may choose to embrace a more general form of modification.

5.4. IV - Requirements for a General Form of Modification

The preceding argument shows the general requirements for a general form of modification.

First, any such operation must follow the two principles laid down in the preceding section.

Second, such an operation permit atomic traversal of any edge in the program data structure

graph. Third, values of variables and structure components form part of the state of the program

at any time; backtracking restores program state, and hence must restore variable values. There-

fore assignments must be undone automatically on backtrack. Fourth, fully general assignment

such as Lisp's setq is not required; all that is required is some method of manipulating arguments

of structures atomically.

5.4.1. Methods of Representation of Data Structures.

For obvious reasons, the method of modifying data structures is bound up in their represen-

tation. We examine three options:

6.4.1.1. Use of the Prolog Database, and Modifications using A4sert/Rerat

This has been a popular choice among Prolog CAD programmers [HillS5a], but we find it

unsatisfactory for several reasons. First, we find that one of the strengths of Prolog is its ability

to equate several variables without assigning any of them to values; an assignment to any one

*. .. *
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therefore assigns to them all. Assert destroys such links between logical variables. Second, links

between nodes in the data structure graph must be maintained through some form of keys, and

the Prolog database search mechanism employed to search for the successor nodes. This search

may appear to be 0(1) to the programmer, but a actual 0(1) search on a procedure that

changes during the course of a program's execution requires an adaptive hashing scheme beyond

that employed by most Prolog execution environments. On another level, the use of such keys is

really a form of explicit pointers, and one of the major motivations for symbolic programming

languages has historically been the desire to avoid explicit pointers. Third and most important,

such modifications are not undone on backtrack, which we (and most Prolog programmers) find

unacceptable. ',

5.4.1.2. Use of Secondary Storage Structures with Explicit Keys

In this method, rather than storing the actual pointers to successor nodes, nodes store keys -

and search a secondary structure which may be easily modified for the value.' We have two objec-

tions to this. First, structures which may be modified easily are trees, and hence the cost of any

modification is bounded below by ogn, and above by n. Second, the objection to explicit

pointers cited above applies here. Third, additional storage structures unnecessarily complicate

the code.
p.

5.4.1.3. Use of Implicit Pointers and an Explicit Assignment Mechanism, rplacarg
'I.

We prefer to manipulate pointers implicitly, in the manner of classic Prolog and Lisp pro-

grams. In order to do this, we need an explicit mechanism to reset pointers.

The mechanism we choose is a generalization of Lisp's rploca and rplacd mechanisms. Our

mechanism, rplacarg(erm, ArgNum, Value), sets the argument ArgNum of term Term to Value.
C-

No unification is done on Term, other than to determine that it has at least ArgNum arguments,

Ue, eg. tratkoSI
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and to determine the address of ArgNum. The value Value is then written into the appropriate

location, and the old value and the address trailed.

Notice that rplacarg when called on a list with ArgNum-2 is equivalent to rplacd; when

ArgNum -I it is equivalent to rplaca.

When rplacarg is used to manipulate edges, both the principles enumerated in the previous

section are respected; consistency is maintained, since the assignment is transparent to all other

nodes in the graph, and atomic modification is maintained since only one memory location (and

hence only one node) is affected. Further, structures are represented naturally, without explicit

indices; no secondary data structures are required, and hence pointer traversal is 0(1 i).

5.5. V - Implementation of Rplacarg In Quai-Pure Prolog

Quasi-pure Prolog is Prolog code that does not use assert, retract or write, but that does use

cut, fail and other built-in meta-logical primitives such as vat. In this section, we demonstrate an

implementation of rplacarg using the var primitive.

Conceptually, what we want to do here is permit programs written in Prolog to behave as if

Prolog was a language that permitted multiple assignments, when in fact it permits only a single

assignment. In order to do this, we must store rather more than the value of some component of

a structure in its slot; we must store a data structure, containing at least the current value of the

slot and an unbound variable; the unbound variable is reserved to be bound to future values of the

component. Both an inductive view of this requirement and the need to save old values against

backtracking indicate that all old values of the component mus the stored in this structure.

The simplest structure which performs these tasks for us is a list, whose last element is an

unbound variable and whose remaining elements are past values of the component, in order; the

first element of the list is the first value of the component, and the last (but one) is the current

value of the component. Accessing the current value involves traversing the list until the last

bound element is reached, and returning that value; setting the current value involves traversing
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the list until the last element is found, and then binding that element to a list consisting of the

current value followed by an unbound variable.

To avoid semantic confusion when either unbound variables or lists become values of the

component, we use an equivalent data structure, which we call a valStrudt; a valStrid has two

components, value and futureValues. The equivalence of a valStrucd to a list is easily seen if it

is remembered that the Prolog list operator is merely syntactic sugar for the binary operator.,

which was the list operator in early Prolog implementations.

We formalize these notions in two procedures: accesaVat and setVal. acces$Val accesses the

current value of such a nested valStruct; sdetVal sets a nested valStuct to a new value.

acceaVal(valStruet(X, U), X)
var(tJ).

accesaVal(valStruct(., Y), X) -
accenValir, X).

aetvalt, X)
var(U),
U - valStruc(X, .j.

setVal(valStruct(-., Y), X):-
setVal(Y, X).

Once this construct is adopted it is relatively easy to write rplacarg:

rplacarg(Term, ArgNurn, Value).-
arg(Term, ArgNum, Arg),
setVal(Arg, Value).

It is relatively easy to see that this implementation of rplacarg meets our criteria; in particu-

lar, old values are restored on backtrack. It does, however, create three problems:

(1) Since components of data structures no longer contain only the value of the component, pro-

grams cannot use the unification mechanism of Prolog to examine structures directly; rather, they

must use the analog to rplacarg:
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acceaeargtTerm, ArgNum, Value).-
arg(1erm, ArgNum, Arg),
acceeaVal(Arg, Value).

This is not a major problem for us, since we prefer access procedures and type definition code to

unification in any case: it makes modification of the definition of data structures easier during pro-

gram development. Many Prolog programmers, however, find the unification mechanism

extremely helpful.

(2) Access times can no longer be bounded by 0(1); rather, each access (or set) consumes time

proportional to the number of times a component is set during the course of an algorithm; of

course, this number may be proportional to the time complexity of the algorithm, though in gen-

eral it is 0(1). Hence this implementation can in a pathological case square the running time of

an algorithm.

(3) This method stores all old values of every component, which is extremely space-inefficient. We

shall show below that an old value need be stored only in a subset of the cases where the address

of the component would need to be stored if bound as an unbound variable. As shown by Warren

and others[Tick861 experimentally, this is only a small percentage of the cases. Hence most of the

storage used by this algorithm is garbage, and, worse, garbage that cannot be collected by most

garbage collection algorithms.

In sum, this method permits the development of programs using networked data structures

in current Prolog implementations; it also serves to show that rplacarg is no worse a corruption of

pure Prolog than var.

S.0. VI - Implementation In a Warren Abstract Machine

The Warren Abstract Machine IWAM] is a three-stack architecture for the execution of Pro-

log. Virtually every Prolog implementation assumes some variant of the WAM, or implements

one, all the way from interpreters through dedicated hardware.

?,p d. , 0" .- .-. - , ,.. . . - . . - . . - . . . . . -. • p. - _. .. . . . . . ..
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In most respects, the WAM is a conventional stack-based Von Neumann architecture. The

WAM's local stack resembles the stack on most conventional machines. The stack contains two

types of data structures, environments (analogous to and closely resembling stack frames in con-

ventional architectures), and choice points. These are required to support the non-determinacy of

Prolog programs. They save the register values and form a 'cap* on the stack which cannot be

removed until this choice point is either exercised or removed by a cut. The second stack, the

heap, is precisely analogous to the heap in Algol-C, and performs the same function. The third

stack, the trail, has no analogue in non-WAM machines. Its purpose is to save the addresses of

variables which have been set, so that these variables may be unset upon backtrack.

Clearly not all values need be reset upon backtrack. In particular, variable locations above

the top of the heap when the last choice point was laid down will disappear on backtrack, and

hence need not be reset; similarly, variables above the top choice point on the stack need not be

reset. WAM architectures perform both these optimizations.

6.6.1. Structure-Copylng Machines

On structure-copying machines, rplacarg is an extremely simple operation to implement. In

such machines, an n-field structure takes up n+l consecutive locations on the heap. The first

location contains the functor and arity information; the remaining n contain the n arguments, in

order. Hence implementing rplacarg requires only finding the base address of the structure on the

heap, indexing to the argument to be written, and writing it directly; no unification is involved.

Of course, the rplacarg operation must be undone on backtrack, so if the location written

must be trailed as if written originally, and its original value trailed with it. The usual optimiza-

tions apply; if this location will disappear in any case on the next backtrack, then the trailing

need not be done.

The need to trail values as well as locations means that trail entries must become a pair

rather than a single entry. Strictly speaking, trail entries need only be a pair if the previous entry

was a value, rather than the special value unbound; however, we suspect that the penalty for

'..,

,, .*r. * _
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making each entry on the trail a pair rather than discriminating on this basis is too small to war-

rant the additional implementation complexity.

On a side note, this implementation adds some garbage to the trail. Suppose some location k

is written twice after some choice point has been laid down and before the next one is laid down;

k will be written twice on the trail, and on backtrack will have two values restored, only the

second of which is at all relevant to future computation. TouatilTouati&61, however, has demon-

strated that it is a small matter to garbage-collect the trail.

5.0.2. Structure-Sharlng Machines

Structure-sharing implementations of the WAM do not directly represent a structure on the

heap in the straightforward manner of structure-copying implementations. Rather, a structure is

represented on the heap by k+1 consecutive locations, where k is the number of variables appear-

ing in the akele on of the structure, that is, the instance of the structure appearing at some locs-

tion in the program. This practice saves some heap space when constants appear in structures in

the program, since the structures' constant arguments are not copied onto the heap.

In a structure-sharing implementation[Warren77, the first of the k+I heap locations con-

tains a pointer to the skeleton in code space, and the remaining k arguments provide values of the

variables referenced in the skeleton. For example, the structure Ioo(, X, 2, Y) would be -

represented as: C.

,I.

.?
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.2

2

.1

1

foo

Heap Entry Skeleton

foo(l, X, 2, Y): Structure-Sharing Implementation

-n in the diagram refers to an offset of a locations from the base of the heap entry.

Space-saving is achieved since the skeleton, which is at least as large as the heap entry,

appears only once, while the heap entry is created as often as the structure based on this skeleton

is instantiated. In a structure-copying implementation, the heap entry is the same size as the

skeleton.

Unification is more complex in a structure-sharing environment, and for obvious reasons.

rplacarg is more complex in a structure-sharing environment as well. First, the skeleton must be

referenced to determine which heap location must be written. It may be that the appropriate

argument in a structure-sharing environment is not a heap location (for example, arguments 1 or

3 in the above example), in which case the replacement should not take place, since the replace-

ment would occur in every instance of this skeleton on the heap; clearly not what is desired. rpla-

carg must fail, or, better, signal an error.

More subtle bugs may occur in a structure sharing environment. Consider the skeleton

foo(X, X). The diagram appears below

% % %
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foo

Heap Entry Skeleton

foo(X, X): Structure-Sharing Implementation

Now, suppose it was desired to replace the first argument of some instance of this structure:

if it bad been 1, suppose it was written to 2. rplacarg would access the first argument in the

skeleton, And that it was a heap offset (offset of 1), would find the location in the heap and then

write it with the value 2. Subsequent accesses to the second argument would also find that its

value was 2, because the firet and second argument reference the same memory location.

Note, incidentally, that this bug afflicts the implementation of rplacarg given in the previous

section. This has not affected the programs we have written using this mechanism (including a

3000-line circuit layout package) since our data structure definition packages do not create skele-

tons containing either constants or repeated variables.

The solution to this bug is to attach a non-writeable protection flag (it need only be a single

bit) to each argument of a skeleton in Prolog. If the Bag is FALSE, then the argument can be

written; it it is TRUE, then the argument cannot be written. This is not a difficult task, since the

writeability of any argument is determined when the skeleton is created, and is quite easy to

determine: the only writeable arguments are those which are variables which only appear once in

the skeleton.

-.



6.7. VII - A Note Concerning Arrays

A number of array implementations have been proposed for Prolog in recent yeatrs. Most

such implementations use the aaser/retrad primitives of Prolog, or propose new data ares to

contain the array, or some combination of these effects.

If rplacaro is admitted, arrays fall quite naturally into standard Prolog as just another form

of structure. The principle difficulty that people have in forming arrays is that the necessary rela-

tionship between the addresses of the various elements means that the graph of the array data

structure is, in some sense, complete; each element of the array has an implicit pointer to every

other element of the array. Hence any modification of any element of an array under a purely

applicative model of computation requires copying the entire array, as discussed in section Il1.

Once the applicative model is disposed of - and in section IV we see it does not apply to Prolog,

in any case - array implementation becomes quite easy. P%

An array is merely a data structure with two fields - a dope vector, which describes how a

given element may be found, and a one-dimensional vector of storage which we call a hunk, which

contains the elements. Now, under any reasonable Prolog implementation data structures will be

stored contiguously in memory, so we use the built-in CProlog primitive functor, which creates a

term of arbitrary size.

We give the code to make and access arrays here. Note that arrays here are structures of

four components; the fields Dimension and DimeneionVedor are included merely for error-

checking.

The code is relatively straightforward, and should be easy to follow.

makeArray(DimenesionVedor, Array) makes a multi-dimensional array of size indicated by

DimensionVector, which should be a list of positive integers; accessElement(Array, IndezVecor,

Value) returns the appropriate element of Array in Value; of course, IndezVector should be a list

%m, q PCob*084l. rrousttl

','
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of positive integers of the appropriate size of appropriate values. #etElem ent (Array, IndezVector,

Value) sets the appropriate element of Array to Value. The other routines appearing here are

required for support.

The actual implementation of arrays in CProlog 1.5 was a little more complex than this,

since CProlog only permits terms of size 100; readers who wish the array package should write the

authors. The point of this section is merely to demonstrate that, once rplacarg is admitted in

Prolog, then the implementation of arrays is quite natural in Prolog, and requires no other exten-

sion to the language.

S

/ Code to make an array. the dimension and Dimension vectors are
unnecessary; in fact, dimension is so far unused. Dimension vectors are
good for error checking during access... '7

makeArray(DimensionVector, array(Dimeneion, DimensionVetor, DopeVed or, Elements)):-
makeDopeVector(DimensionVedor,Dimension,Size,DopeVctor),
allocateStorage(Size, Elements).

Make the dope vector for the array; the idea is to make address calculation
simple...ie., if the indez vector is ifil,it-O,iSJ and the dope vector is
dil, d/fr, d1s1, the address is:
i/z~dfl/ + i f/*dl/#2 i+SJ'd(S-
°/.

makeDopeVctor(,O,1,5) :- . /" Size of 1 is a hack for the usual case..

makeDopeVector([Dim Ij, .. -
Dim <- 0,
write('Error - size <- 0 in a dimension of this array '), nL,!.
fail.

makeDopeVector([Dim I RestjDimension,Size,(Sizel I DopeVect])
makeDopeVector(Reot,Diml,Siel,DopeVct),
Size is Dim * Sizel,
Dimension is Diml + 1, L

allocateStorage(N,Storage):-
fund or(St orage,hunk,N).

/* Dip the value of an element out °/

accesoElement(arraly(Dimension, DimensionVector, DopeVector, Elements),JndezVecd or, al).

I

%-
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calculateArg(DopeVed,DimensionVedor,JndezVedor,Argf),
Arg is Argf + 1,
*cceeasrg(Arg,Element,Val).

/ Set an Element ./

setElement(array(Dimension, DimeneionVector, DopeVector, Elemente),IndezVector,Val):.
calculateArg(DopeVect,DimenionVector,lndezVedor,Arg),
Arg is Argf + 1,
rplacoarg(Arg,Elements,Val ).

/* Calculate the arg (offset) of an element from its dope vector. The Index
Vector is given merely for error-checking 'I

calculateArg(fff,8o) :- I.

catcutateArg(O,,.,..) :- !,

write('error - too many dimensions in acces '), ni,!,
fail.

calculateArg(,.j,,.) :- I,
write('error - too few dimensions in access), ni,
ftail.

calculateArg(DopeElt I ReatDopeJ, fl I Rest I,flndex I Restlndice.J,Arg)
(IV < Index ->

write('Error - lndez greater than poasibe in one dimension ), nl,
fail;

calculat eArg(R etDope.,RestlV, Restlndices,Argl),
Arg is (DopeElt (Index . 1)) + Argl).

5.8. Integration with Type Definition

The procedures setField and acceesField are obvious extensions to the code given here and

in the previous section.

8. Circular Data Structures

A circular data structure is any data structure where some individual node n may be

accessed through a pointer chain that begins at n. Prolog is not designed to support such struc-

tures, largely because the unification algorithm can run to exhustion chasing the "infinite"

pointer chain.
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Most Prolog implementations, while theoretically forbidding such structures, do not expli-

citly perform a check for them: this check is known in the Prolog community as an occurs check.

Occurs checks are not done since the performance of an occurs check would greatly reduce

efficiency of the unification algorithm. It is virtually never argued that occurs checks should not

be done since circular data structures should be entirely legal.

Nevertheless, the class of circular data structures is very broad, and includes some of the

most elementary structures in computer science; in particular, doubly-linked lists, circular queues,

and chained-and-threaded B-trees are all examples of circular data structures. Hence we argue

that an occurs check is not merely inefficient, but contrary to the desired semantics of a complete

programming language.

Even in the absence of an occurs check, Prolog implementations do not handle circular data

structures well. In our case, we implemented an algorithm that manipulated circuit elements,

called Mock., and their connections, called nds. It was clear that the data structure representing

a net should contain a list of all blocks incident upon the net, and that each block should contain

a list of all nets incident upon it. Here, clearly, is a circular data structure.

In CProlog, however, every attempt to create this structure resulted in an infinite loop in

the unification routine; eventually, we gave up, and stored only the net names in the blocks, and

looked up the actual nets in a balanced tree sorted by net name - a cost of O(logn) for each

pointer traversal, and exceedingly clumsy and inelegant.

We conclude that this difficulty is caused because the unifiaction algorithm is too powerful

and complex. We suspect that this difficulty will not occur in a Warren Abstract Machine, due to

the lazy nature of the WAM unification instructions.

Solutions to this problem are currently being explored. An easy method is to observe that

the unification algorithm continues only so long as the structures match; i.e., as long as no error

has been found. Clearly if the unification algorithm proceeds to such a point that the maximum

depth of any structure in the entire program space has been attained, then we have a case of two

4V
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circular, but consistent, structures.

Now, the current depth of the largest structure in the program data space is in general hard

to compute, but it is certainly easy to bound above by the total size of the heap before unification

began. Hence we suggest that if the unification algorithm takes this many steps, it should ter-

minate (at least on this substructure) with success.

7. Modularlty

Most Prolog implementations have a flat namespace. This is a severe problem in any sym-

bolic programming language when programs become sufficiently large; it is a particularly severe

problem in Prolog, since programmers are encouraged to write many small procedures.

Some Prologs, such as BIM-Prolog, offer a modules with specified public and private pro-

cedures. A public procedure is defined everywhere, a private procedure only within the module.

The key point is that every procedure, either public or private, is defined entirely within a single

module.

This paradigm is inadequate, in our judgement. Prolog's clause-based programming

encourages, as we mentioned above, a variant on object-oriented programming. Under this style,

it is natural to define associate a module with each type. But a procedure under this style is made

up ot one clause for each type, and hence one clause per module.

Hence we suggest a third procedure type, a shared procedure. A shared procedure is visible

everywhere; it is also defined everywhere. Adding a module to a program does not invalidate

existing clauses of the shared procedures save those previously defined by this module.

S. Performance

Topolog can place, generate, and route a single bit or an adder in about 40 CPU seconds

under CProlog on a VAX 11/785 running 4.2 BSD. In a compiled VAX environment, we would

expect to see the adder laid out in something under 5 CPU seconds. A cifplot of the adder

appears in appendix one. ,

'a
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9. Status and Suggestions For Further Work

The relational database inherent in Prolog and the logical variable permitted us to extend a

standard layout generator easily and naturally into a powerful functional-level module generator,

which gives us a unique CAD tool. We found that Prolog's semantics provide the basis for a form

of data-driven programming which subsumes both the functional and object-oriented paradigms.

When we began this research, we were skeptical that the logic programming paradigm was

powerful enough to represent conveniently the large data structures and complex algorithms of a

modern CAD system. We have discovered this initial view to be quite false; indeed, the language

is powerful enough that the apparent lack of semantic structure is easily extended by procedures

written in the language and its builtins. This is not true of many programming languages; for

example, it is impossible in Lisp to write an efficient array package using the intrinsic data struc-

tures of Lisp. We have shown that it is easy in Prolog.

Nevertheless, our Prolog mimicry of powerful semantics is often too inefficient to be of prac-

tical benefit. Hence we are currently engaged in the process of modifying an existing Prolog inter-

preter to implement internally rplacarg and a partitioned namespace
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11. Appendix - var is implied by cut, fail

We now show that var need not be a meta-logical primitive of Prolog, but can be written

using pure Prolog and the !, fail implementation of not. The idea is that a variable may be
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forced to unify with two separate constants (with a failure in between unifications), and that no

other construct can do this.

/ not SaX) succeeds if X cannot unify to a

nota(a) :- !, fail.
not a(J.

/* not. b(X) succeeds if X cannot unify to b 0/

not b(b) :.f, fail.
not. b(.).

/* X is a variable if it can unify to both a and b, ie if both not.a(X)
and not. b(X) fail */

var(X) :-not (not-a (X)), not (not .b(X)).

not(X). X, !, fail.
not(.)

Of course, this variant of negation is somewhat controversial in the Prolog community,

espescially when it is applied to non-ground terms (as it is here)[Flanagan8g6. However, we

suspect that we could write a such a var procedure in most reasonable forms of negation; more-

over, since we immediately backtrack over the bindings we make, we are not troubled by incon-

sistent bindings.

12. Appendix - Implementation of Mla-Cut Algorithm In Prolog Following is the

code for the min-cut algorithm, implemented using rplacarg in Prolog. We use setField and

acceseField as symbolic synonyms for rplacarg and accesaarg.

% min-cut algorithm. Given a partition of the graph, find a new partition
so that the cut is minimized.

min.cut(U, V, NewU, NewV):-i
turn,. off. selections(U),
turn_ off. selections(V),
min.cut.loop(U, V, Seledtions),
min- cut. movelist (Select ions, Moves),
min.cut.check(Movu, U, V NewU, NewV).

'. " , % %- . - - '. , , " . - . - o. . . -. . . . = - - . . . . • .~ . . . . . %
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turn. off.aelections(fl) :- !.

turn. off_ aelect iona(/[Block I Blocka/)
aetField(Block, aelected, false),
turn_ off. adectiona(Block.).

% End of algorithm, or try again? If Moves are 5, can T improve placement.

min.cut.-check(, U, V, U, V) .

min cut.check(Movea, U, V, NewU, NewV)
make.movea(Movea, U, V, NeztU, NeztV),"
min.cu4(NextU, NeztV, NewU, NewV).

% make moves. Looks weird, but I swear it 'a faater thia way O(En) inatead
% of 0(n^2).

make. move.(5, U, V NewU, NewV):-
concat (U, V, L),
partitionOntoSides(L, NewU, NewV).

make. movea(coat(UO, VO, .)I Moves], U, V, NewU, NewV):-
aetField(UO, aide, right),
aetField(VO, aide, left),
make movea(Movea, U, V, NewU, NewV).

part itionOnt oSides (5, 9, 5):- 1.

part itionOntoSidea([Block I Blockal, [Block lLefta], Righta):-
accesaField(Block, aide, left),

part it ion Ont oSide.(Blocka, Lefts, Righta).

part itionOnt oSidea ([Block I Blocks], Lefts, [Block I Righta]):-
part it ionOntoSidea(Blocka, Left., Right.).

% main loop. Trivial Caaes.

min.cut.loop(5, ., 5):-!.

min.cutjloop(., 1, ):- !

min. cutloopU, V, ISelect ion I Select ions])
infinity(Inf),
min. cut.saeect(t, V, cost(., -, Inf), Seection),
Selection - coat(Ul, VI, Coat),
(Coat - !nf .> write('Selection unbound!'), nl, break; true),
aetField(Ul, aelected, true),
aetField(VI, aelected, true),
delde(U, Ul, Up),
delete(V, VI, Vp),
min cut loop(Up, Vp, Selection.).
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% trim the selections made by min..utloop down to a movelist.

min- cut- moveliat (Select ions, RealSelect ion.):.
find. minpoint (Selections, 0, 0, 0, 0, N),
trim aect ions(Select ions, N, RealSelect ion.).

% find the point where the sum is minimum.

find. min.point(f, -, -, -, N, N) :- !.

find.min._point(cost., _, Coat)l Sela, Cot In, CurMin, LactPt, MinPt, N)
Thi8Coat i. Coatln + Coat,
ThiePt ia LaatPt + 1,
(ThisCoet < CurMin -.

find.minpoint (Sets, ThiaCoet, ThiaCost, ThiePt, ThiaPt, N)

find.. min.point (Sets, ThiCoat, CurMin, ThielA, MinPl, N)

% Now trim eelectiona, guided by N.

trim. elections(., 0, fl):- .

trim.-selectiono(fSel I Selectiona, N, (Sel I RealSelecionaf).
Ni is N- 1,

trimadelect iona (Select ions, Ni, RealSeledion8).

% Inner loop for the min.cut algorithm. Select a pair to be interchanged.

% Really a double do-loop. min~cutaect ia outer do - fauz ia inner do

min.cut.#ele(, -, CoatStruct, CoatStruc) :- !.

min.cut-8elect(0I ReatU, V, Coatin, Cost):-
min.cut.eled-.auz(V, UO, CoatIn, NeztCoat),
min.cut, elect(RestU, V, NeztCoat, Coat).

min.cut.elec auz(, -, Cost, Coat) :!.

min.cut- aelect auz(VlI ReatV, U, coat(.,.,Coat), CoatOut):-
cornput eCoat(U, V, Coat i),
Coati < Coat, /,
min. cut. 8elec. auz(RtV, U, coat(U, V, Coa 1), CoatOut).

min.cut- select- auz([VIReatVI, U, Cost, CoatOut):.
min. cut- select- aux(RestV, U, Coat, CoatOut).

computeCoat(U, V, Coat):.
acceaaField(U, nets, UNeta),
acce8aField(V, neta, VNeta),
ordered_ aet interaection(UNeta, VNWta, netOrder, Nets),

t o . •. -%,-%-.- , , % % . _. %_ .- % --. % % - % % % % . . .
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aet- differ ence( UNeta, Neta, UMetal)
ae_ difference( Mecta, Nets, M~etal)
computeCoatlncrementftJNeta, U, 0, CoatU),
computeCoatIncremnt(V~eta1, V, 0, Coat V),
Coat ia Coat U + Coat V.

% successful if name of X leas than name of Y

netOrder(X, Y)-
acceaaField(X, name, NameX),
acceaaField(Y, name, NameY),
XO<TY

computeCostlncrement(f, -, cost, coat). L-!

comput eCoat Incremnent ('Ne I Nets],' Block, Coat In, Coat Out)
part it ionBlock8(Nei, Left Block., RightBlocks),
cornput elncrement(LeftBlock., RightBlock8, Block, Inc),
Nezt Coat ia Coat In + Inc,
cornput eCoat Increment (Nd a, Block, NezLCoat, Cost Out).

part itionBlocka(Net, LeftBlocka, RightBlocks.
aeceaaField(Net, blocks, Blocks),
apt itBiocka (Block., LeftBlocka, RightBlock.).

aplitBlockaffl§ iff):.!.

4. aplitBiocka ((Block I Blockaj, [Block I LeftBlockaJ, RightBlocka).
acceaaField(Block, aide, Side),
acceaaField(Block, aelected, Selected),
(Side - left, Selected - falae; Side - right, Selected -true),

oplitBlocka(Blocka, LeftBlock., RightBlock.).

splitBlock. ((Block I BlocksJ, LeftBlock., (Block I RightBlockal).
dv aplitBlocks(Blocka, LeftBlocka, RightBlocks).

% How to compute the increment? If either side ia null, block must be on the
% other aide and hence moving it to thia aide will increaae coat by 1.

%cornput elncr em ent (ff , 1):.-!.
U' computelncrement(., If,- ):- .

4 % If block is the only one on one aide, moving it to the other remove# thia
% net from the cust. Coat decreaaed by 1.

* ~computelncrementojfri, .' U, .1 .
computelnerement(.,jU/, U, -I):-!.

% Otherwiae no effed on coat.

computelncrement(.,_. , 0):-!.

Me .W
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